Updating the partial singular value decomposition in latent semantic indexing

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Updating the partial singular value decomposition in latent semantic indexing

Latent semantic indexing (LSI) is a method of information retrieval that relies heavily on the partial singular value decomposition (PSVD) of the term-document matrix representation of a dataset. Calculating the PSVD of large term-document matrices is computationally expensive; hence in the case where terms or documents are merely added to an existing dataset, it is extremely beneficial to upda...

متن کامل

Two Uses for Updating the Partial Singular Value Decomposition in Latent Semantic Indexing

Latent Semantic Indexing (LSI) is an information retrieval (IR) method that connects IR with numerical linear algebra by representing a dataset as a term-document matrix. Because of the tremendous size of modern databases, such matrices can be very large. The partial singular value decomposition (PSVD) is a matrix factorization that captures the salient features of a matrix, while using much le...

متن کامل

Clustering and Latent Semantic Indexing Aspects of the Singular Value Decomposition

This paper discusses clustering and latent semantic indexing (LSI) aspects of the singular value decomposition (SVD). The purpose of this paper is twofold. The first is to give an explanation on how and why the singular vectors can be used in clustering. And the second is to show that the two seemingly unrelated SVD aspects actually originate from the same source: related vertices tend to be mo...

متن کامل

Using Random Indexing to improve Singular Value Decomposition for Latent Semantic Analysis

We present results from using Random Indexing for Latent Semantic Analysis to handle Singular Value Decomposition tractability issues. We compare Latent Semantic Analysis, Random Indexing and Latent Semantic Analysis on Random Indexing reduced matrices. In this study we use a corpus comprising 1003 documents from the MEDLINE-corpus. Our results show that Latent Semantic Analysis on Random Index...

متن کامل

Fast Updating Algorithms for Latent Semantic Indexing

This paper discusses a few algorithms for updating the approximate Singular Value Decomposition (SVD) in the context of information retrieval by Latent Semantic Indexing (LSI) methods. A unifying framework is considered which is based on Rayleigh-Ritz projection methods. First, a Rayleigh-Ritz approach for the SVD is discussed and it is then used to interpret the Zha-Simon algorithms [SIAM J. S...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computational Statistics & Data Analysis

سال: 2007

ISSN: 0167-9473

DOI: 10.1016/j.csda.2006.12.018